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a b s t r a c t

This paper is concerned with the optimal identification problem of dynamical systems in which only
quantized output observations are available under the assumption of fixed thresholds and bounded
persistent excitations. Based on a time-varying projection, a weighted Quasi-Newton type projection
(WQNP) algorithm is proposed. With some mild conditions on the weight coefficients, the algorithm is
proved to be mean square and almost surely convergent, and the convergence rate can be the reciprocal
of the number of observations, which is the same order as the optimal estimate under accurate
measurements. Furthermore, inspired by the structure of the Cramér–Rao lower bound, an information-
based identification (IBID) algorithm is constructed with an adaptive design about weight coefficients
of the WQNP algorithm, where the weight coefficients are related to the parameter estimates which
leads to the essential difficulty of algorithm analysis. Beyond the convergence properties, this paper
demonstrates that the IBID algorithm tends asymptotically to the Cramér–Rao lower bound, and hence
is asymptotically efficient. A numerical example is simulated to show the effectiveness of the proposed
algorithms.

© 2024 Elsevier Ltd. All rights are reserved, including those for text and datamining, AI training, and
similar technologies.
1. Introduction

1.1. Background and motivations

Along with the modern science and technology rapid devel-
pment, quantized systems have been widely applied in practical
ields such as industrial systems, networked systems and even bi-
logical systems. For example, (i) industrial systems (Auber et al.,
018; Gagliardi et al., 2021; Tan et al., 2021): usually quantized
ensors are more cost effective than regular sensors. In many
pplications, they are the only ones available during real-time op-
rations. There are numerous examples of quantized observations
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such as switching sensors for exhaust gas oxygen, ABS (anti-lock
braking systems), and shift-by-wire; photoelectric sensors for
positions, gravity gradiometers with saturation constraints; traf-
fic condition indicators in the asynchronous transmission mode
networks; and gas content sensors (CO, CO2, H2, etc.) in gas and
oil industry. (ii) Networked systems (Dargie & Poellabauer, 2010;
Sohraby & Znati, 2007): thousands, even millions, of sensors
are interconnected using a heterogeneous network of wireless
systems. On account of limitations of the sensor power or com-
munication bandwidth, the information from each sensor turns
out to be quantized observations with a finite bit or even 1 bit.
(iii) Biological systems (Ghysen, 2003; Wang et al., 2010, 2003):
only two states of information, ‘‘excitation’’ or ‘‘inhibition’’, are
detected from outside of the neuron. When the potential is bigger
than the potential threshold, the neuron shows the excitation
state, otherwise shows the inhibition state.

Due to the widespread adoption of systems with quantized
observations, lots of researches related to the identification of
such systems have emerged in the literature (Carbone et al., 2020;
Casini et al., 2011; Godoy et al., 2011; Risuleo et al., 2020; Wang
et al., 2010; Zhao et al., 2023). In addition, numerous methods are
proposed to achieve identification with quantized observations
such as empirical measure method (Wang & Yin, 2007; Wang
et al., 2003), expectation maximization method (Godoy et al.,
2011; Zhao et al., 2016), sign-error type algorithm (Csáji & Weyer,
data mining, AI training, and similar technologies.
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012; Wang et al., 2022), stochastic approximation type algo-
ithm (Guo & Zhao, 2013; Song, 2018), and stochastic gradient
ype algorithm (Guo & Zhao, 2014; Zhang et al., 2021). The emer-
ence of these algorithms prompts us to explore how to achieve
etter identification effect by use of algorithm designs. Moreover,
he study of the optimal quantized identification algorithms not
nly could achieve the improvement of identification theory, but
lso is helpful to improve the resource utilization with the lim-
ted communication bandwidth resources in the communication
ields.

It is worth noticing that there is usually no explicit solution for
he log-likelihood function of quantized systems due to the strong
onlinearity of quantized observations (Zhao et al., 2016), which
akes it extremely hard to design the optimal identification
lgorithm by minimizing the objective function. Fortunately, it
s known that the Cramér–Rao (CR) lower bound is a measure
hat the system data contains the amount of information of
nknown parameters and can be used as a criterion to check the
ffectiveness of a procedure. In other words, the corresponding
dentification algorithm is termed efficient if the CR lower bound
s achieved. Therefore, this paper investigates the optimal iden-
ification under quantized observations from the point of the CR
ower bound.

.2. Related literature

Actually, there are some interesting discussions about the CR
ower bound of quantized systems (Guo & Zhao, 2014; Gustafsson
Karlsson, 2009; Wu et al., 2013). For example, Gustafsson and
arlsson (2009) and Wu et al. (2013) investigated a detailed
tudy on the CR lower bound and derived its expression un-
er different quantized measurements. Moreover, some results
ave also appeared for asymptotically efficient algorithms under
uantized observations in the past two decades (Guo & Diao,
020; Guo et al., 2015; Wang et al., 2018; Wang & Yin, 2007;
ang et al., 2003; Yang & Fang, 2014; You, 2015; Zhang et al.,
021). For example, Wang et al. (2018, 2003) established the
symptotical efficiency properties of empirical measure method
nd non-truncated empirical measure method for FIR systems un-
er binary-valued observations and periodic inputs, respectively.
ased on empirical measure method, Wang and Yin (2007) pro-
osed a quasi-convex combination estimator for multi-threshold
ensors and established its strong consistency and asymptotical
ptimality under periodic inputs, Guo et al. (2015) and Guo and
iao (2020) investigated asymptotically efficient algorithms for
he systems with general quantized periodic inputs under vari-
us cases. Apart from the off-line algorithms mentioned above,
here are also some discussions on online algorithms. Yang and
ang (2014) presented a recursive identification method for FIR
ystems with quantized measurements based on the stochastic
pproximation algorithm with expanding truncation bounds, and
roved its asymptotic efficiency under independent and identi-
ally distributed (i.i.d) two-valued random inputs. You (2015) de-
eloped a stochastic approximation type recursive estimator with
daptive binary observations and i.i.d. input signals, and demon-
trated it asymptotically approached the CR lower bound. Zhang
t al. (2021) proposed a stochastic gradient-based recursive al-
orithm under binary-valued observations, and shown its con-
ergence and asymptotic efficiency under bounded persistent
xcitations for first-order FIR systems.
However, almost all of the existing investigations on asymp-

otically efficient quantized identification algorithms suffer from
ome fundamental limitations. Most of these researches are based
n the empirical measure algorithm, which is off-line and thus
s difficult to apply to feedback controls. On the other hand, the
onditions required are strict in the almost all of the online ones,
2

such as the periodic or two-valued random or i.i.d. inputs, the
adaptive and designable thresholds and so on.

Therefore, the goal of this paper is to develop an asymptoti-
cally efficient online algorithm, which could relax or remove the
above-mentioned limitations. It is our hope that the approach
of this paper will open up new avenues for further studies in
the area of integrated design of identification and control with
quantized constraints.

1.3. Main contributions

This paper investigates the asymptotically efficient recursive
identification of the systems under quantized observations with
multiple thresholds. The main contributions of this paper can be
summarized as follows:

• Inspired by a time-varying projection in Zhang et al. (2022),
a novel weighted Quasi-Newton type projection (WQNP)
algorithm is proposed under quantized observations with
multiple thresholds. With some mild conditions, the WQNP
algorithm is proved to be convergent in both mean square
and almost sure sense under bounded persistent excitations
with the help of a scalar type Lyapunov function. Besides,
the convergence rate can achieve the reciprocal of the num-
ber of observations under a proper requirement of weight
coefficients, which is the same order as that under accurate
measurements.

• This paper gives the CR lower bound of the system with
multiple-threshold quantized observations. Then, based on
the recursive form of its CR lower bound to design the
weight coefficients of the WQNP algorithm, an information-
based identification (IBID) algorithm is constructed, whose
adaptive weight coefficients depend on the parameter es-
timates. Besides, the convergence rate is proved to reach
the reciprocal of the time step by combining the scalar type
and matrix type Lyapunov function methods. Moreover, the
IBID algorithm is shown to be asymptotically efficient un-
der bounded persistent excitations. In contrast with Wang
and Yin (2007), the algorithm is an asymptotically efficient
online algorithm under non-periodic or non-independent
signals.

• The theoretical analysis method is different from the exist-
ing quantized identification algorithms. This paper adopts
an idea of higher moment acceleration to solute the strong
coupling between the weighted coefficients and the esti-
mates of the IBID algorithm in the matrix type Lyapunov
function method. It is worth mentioning that Markov in-
equality and the higher moments of estimation errors are
used to establish the convergence rate of the matrix type
Lyapunov function.

The rest of this paper is organized as follows. Section 2 de-
scribes the identification problem under multiple sensor thresh-
olds. Section 3 presents the WQNP algorithm, and demonstrates
its convergence properties. Section 4 constructs the IBID algo-
rithm based on the CR lower bound, and establishes its conver-
gence properties and asymptotic efficiency. All of the proofs of
the main results are uniformly provided in Section 5. Section 6
supplies a numerical example to show the main results. Section 7
gives the concluding remarks and related future works.
Notation. In this paper, Rn and Rn×n are the sets of
n-dimensional real vectors and n × n dimensional real matrices,
respectively. In is an n-dimension identity matrix. ∥ · ∥ is the
Euclidean norm, i.e, ∥x∥ =

(∑n
i=1 x

2
i

) 1
2 for the vector x ∈ Rn

nd ∥A∥ =

√(
λmax(AAT )

)
for the matrix A ∈ Rn×n. Besides, the

trace of the matrix A is tr(A) =
∑n a . For the matrix A , denote
i=1 ii k
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)
as ∥Ak∥ = o

( 1
k

)
. The

function I{·} denotes the indicator function, whose value is 1 if its
argument (a formula) is true, and 0, otherwise.

2. Problem formulation

2.1. Observation model

Consider the following dynamic linear system

yk = φT
k θ + dk, k = 1, 2, . . . , (1)

where k is the time index, φk ∈ Rn, θ ∈ Rn, and dk ∈ R are the
regressor, unknown but constant parameter vector, and noise at
time k, respectively. The system output yk is measured by a sensor
of m thresholds −∞ < C1 < C2 < · · · < Cm < ∞. The sensor is
represented by a set of m indicator function, which is given by

qk =

⎧⎪⎪⎨⎪⎪⎩
0, if yk ≤ C1;

1, if C1 < yk ≤ C2;

...
...

m, if yk > Cm;

(2)

which can also be represented as qk =
∑m

i=0 iI{Ci<yk≤Ci+1}, where
C0 = −∞ and Cm+1 = ∞.

2.2. Assumptions

In order to proceed our analysis, we introduce some assump-
tions concerning priori information of the unknown parameter,
the regressors and the noises.

Assumption 2.1. The prior information on the unknown param-
eter θ is that θ ∈ Ω ⊂ Rn with Ω being a bounded convex set.
And denote θ̄ = supη∈Ω ∥η∥.

Assumption 2.2. The vector sequence {φk} is supposed to be
bounded persistently exciting, i.e.,

lim inf
k→∞

1
k

k∑
l=1

φlφ
T
l > 0, (3)

and supk ∥φk∥ ≤ φ̄ < ∞.

Assumption 2.3. Assume that {dk} is a sequence of independent
and identically normally distributed variables following N(0, σ 2).
The distribution and density functions of d1 are denoted as F (·)
and f (·), respectively.

Remark 2.1. Actually, the median µ of the noise could be esti-
ated similarly to Wang et al. (2022) when µ ̸= 0. Thus, without

oss of generality, we assume that µ = 0 throughout the paper.
Moreover, Assumption 2.3 can be extended to the unknown but
parameterizable noise distribution case, such as normal distribu-
tion with unknown mean value and variance. In this case, the
parameters of the noise distribution and the unknown parameter
θ can be jointly identified by the same way of identifying the
unknown parameter θ alone (Wang et al., 2006). Furthermore,
the noise under Assumption 2.3 also can be generalized to the
one that the second derivation of the logarithm density function
is less than zero (i.e., d2 ln f (x)

dx2
< 0), and the density function of the

noise satisfies min 1≤i≤m
x∈[Ci−φ̄θ̄ ,Ci+φ̄θ̄ ]

f (x) > 0.

The goal of this paper is to develop an online asymptotically
efficient algorithm to estimate the unknown parameter θ based
n the information from input φk, quantized observation qk, and
he stochastic property of the system noise dk under bounded
ersistent excitations.
3

3. The WQNP algorithm

This section will construct a Quasi-Newton type identifica-
tion algorithm under quantized observations, and establish its
convergence properties.

3.1. Algorithm design

For the simplicity of description, denote Fi(x) = F (Ci − x),
fi(x) = f (Ci − x), for i = 0, . . . ,m + 1, and Hi(x) = Fi(x) − Fi−1(x),
hi(x) = fi(x) − fi−1(x) for i = 1, . . . ,m + 1. Moreover, denote

Fi,k = Fi
(
φT
k θ
)
, fi,k = fi(φT

k θ ), (4)

and their estimates based on θ̂k−1 as

F̂i,k = Fi(φT
k θ̂k−1), f̂i,k = fi(φT

k θ̂k−1), (5)

for i = 0, . . . ,m + 1. Correspondingly, denote

Hi,k = Hi(φT
k θ ), hi,k = hi(φT

k θ ), (6)

and their estimates as

Ĥi,k = Hi(φT
k θ̂k−1) ĥi,k = hi(φT

k θ̂k−1), (7)

for i = 1, . . . ,m + 1. Hence, Eqk =
∑m+1

i=1 (i − 1)Hi,k.
Next, we would like to introduce the idea of the Quasi-Newton

type identification algorithm under quantized observations. Actu-
ally, the identification problem of unknown parameter θ is to find
the roots of

uk(θ̂ ) =

m+1∑
i=1

(i − 1)Hi,k −

m+1∑
i=1

(i − 1)Hi(φT
k θ̂ ),

for all k ≥ 0. Note
∑m+1

i=1 (i − 1)Hi,k is unavailable due to the
existence of unknown parameter θ , and qk is available with its
expectation

∑m+1
i=1 (i − 1)Hi,k. Therefore, we replaced

∑m+1
i=1 (i −

1)Hi,k with qk in uk(θ̂ ). By instrumental variable method (Ljung
& Söderström, 1983), we use φk-s instrumental variable to define
the vector-valued scores

Uk(θ̂ ) = −

k∑
l=1

(
ql −

m+1∑
i=1

(i − 1)Hi(φT
l θ̂ )

)
φl. (8)

whose Jacobian matrix is used to construct the Newton-type step.
Then, we calculate ∂Uk(θ̂ )

∂θ̂
as

∂Uk(θ̂ )

∂θ̂
= −

k∑
l=1

m+1∑
i=1

(i − 1)hi(φT
l θ̂ )φlφ

T
l . (9)

We generalize the above calculated Newton step as

Pk =

k∑
l=1

βlφlφ
T
l . (10)

Then, based on the idea of recursive least squares, we construct
the identification algorithm as

θ̂k = θ̂k−1 + akPk−1φk

(
qk −

m+1∑
i=1

(i − 1)Ĥi,k

)
,

ak =
1

1 + βkφ
T
k Pk−1φk

,

Pk = Pk−1 − akβkPk−1φkφ
T
k Pk−1.

Then, we design the weight coefficients αi,k on the quantized
observation qk to adjust the performance of the identification
algorithm, i.e.,

sk =

m+1∑
αi,kI{Ci−1<yk≤Ci}.
i=1
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oreover, we utilize the specific time-varying projection opera-
or in Zhang et al. (2022) to guarantee the boundness of estimates,
hich is also helpful in the convergence analysis of the scalar type
yapunov function method. Based on the above idea, a weighted
uasi-Newton type projection (WQNP) algorithm is constructed
s Algorithm 1.

Algorithm 1 The WQNP Algorithm

Beginning with an initial value θ̂0 ∈ Ω and a positive definitive
matrix P0 ∈ Rn×n, the algorithm is recursively defined at any
k ≥ 0 as follows:
1: Weighted conversion of the quantized observations:

sk =

m+1∑
i=1

αi,kI{Ci−1<yk≤Ci}. (11)

2: Estimation:
θ̂k = ΠP−1

k

(
θ̂k−1 + akPk−1φks̃k

)
, (12)

s̃k = sk −

m+1∑
i=1

αi,kĤi,k, (13)

ak =
1

1 + βkφ
T
k Pk−1φk

, (14)

Pk = Pk−1 − akβkPk−1φkφ
T
k Pk−1, (15)

where Ĥi,k are defined in (7). Besides, ΠQ (·) is the projection
mapping defined as
ΠQ (x) = argmin

z∈Ω
∥x − z∥Q , ∀x ∈ Rn, (16)

where ∥ · ∥Q is defined as ∥η∥Q =
√

ηTQη, ∀η ∈ Rn and Q is
a positive definitive matrix.

Remark 3.1. It is worth noticing that when the quantized output
s binary-valued observation (i.e., m = 1) and the dimension
f the unknown parameter θ is one (i.e., n = 1), the WQNP
lgorithm can degrade into the unified stochastic gradient-based
ecursive algorithm in Zhang et al. (2021). More specifically, the
nnovation of the quantized observation in (13) can be rewritten
s s̃k = (α2,k − α1,k)

(
F (C1 − φT

k θ̂k−1) − I{y≤C1}

)
. Therefore, the

WQNP algorithm is a general extension of the algorithm in Zhang
et al. (2021) from binary-valued observations to multiple sensor
threshold observations.

3.2. Convergence properties

Before establishing the convergence, the following assumption
about the weight coefficient is given.

Assumption 3.1. The weight coefficients αi,k (i = 1, . . . ,m + 1)
and βk are scalars satisfying −∞ < α ≤ α1,k < α2,k < · · · <

m+1,k ≤ α < ∞ with αm+1,k − α1,k ≥ α > 0 and 0 < β ≤

k ≤ β < ∞, respectively. Besides, the weight coefficients satisfy
2α
β

· min x∈[Ci−φ̄θ̄ ,Ci+φ̄θ̄ ]

1≤i≤m
f (x) > 1 −

1
n .

heorem 3.1. If Assumptions 2.1–2.3 and 3.1 hold, then the WQNP
lgorithm is convergent both in mean square and high rank square,
.e.,

lim
k→∞

Eθ̃ T
k θ̃k = 0 and lim

k→∞

E∥θ̃k∥
2r

= 0, (17)

nd there exists a positive real number ν < ∞ such that

∥θ̃k∥
2

= O
(

1
ν

)
and E∥θ̃k∥

2r
= O

(
1
rν

)
, (18)
k k
4

for r = 2, 3, . . . Besides, the WQNP algorithm is also convergent
almost surely, i.e.,

lim
k→∞

θ̃k = 0, a.s.,

where θ̃k = θ̂k − θ is the estimation error.

The proof of Theorem 3.1 is supplied in Section 5.1.

Remark 3.2. Theorem 3.1 establishes the convergence properties
of the WQNP algorithm for high-order parameter systems with
quantized observations while Zhang et al. (2021) show the con-
vergence properties for 1-order parameter systems. The key diffi-
culty of the proof is how to guarantee the compression coefficient
less than 1, which is related to dealing with the non-commutative
matrices. Two techniques are applied in this part. First, a time-
varying projection operator is introduced to deal with the product
of the non-commutative matrix Pkφkφ

T
k and keep the boundness

of estimates. Besides, the boundness of estimates and regressor is
used to ensure f = min1≤i≤m minx∈[Ci−φ̄θ̄ ,Ci+φ̄θ̄ ] f (x) > 0, and then
make the compression factor 1 −

2αf
β̄

in (37) less than 1.

Besides the convergence, the convergence rate is another ma-
jor problem that should be made clear.

Theorem 3.2. Under the conditions of Theorem 3.1, if the con-
dition (3) in Assumption 2.2 is enhanced as there exist a positive
integer h and positive number δ > 0 such that 1

h

∑k+h
l=k+1 φlφ

T
l ≥

δ2In, and

α

β
>

(
2 inf

k
min
1≤i≤m

min
ϑ∈Ω

f (Ci − φT
k ϑ)

)−1

, (19)

hen the WQNP algorithm has a mean square convergence rate as( 1
k

)
, i.e.,

E∥θ̃k∥
2

= O
(
1
k

)
,

where α and β are defined in Assumption 3.1.

The proof of Theorem 3.2 is put in Section 5.2.

Remark 3.3. Theorem 3.2 describes the fact that even under
quantized observations, the convergence rate of O

( 1
k

)
can be

chieved with a suitable design of weight coefficients in the
QNP algorithm (12)–(15), which is the same rate as the case
ith accurate measurements.

Similar to the proof of Theorem 3.1, the following corollary
an be derived directly, which is concerned with high rank square
onvergence rate.

orollary 3.1. Under the condition of Theorem 3.2, we have
∥θ̃k∥

2r
= o

( 1
k

)
for r = 2, 3, . . .

4. Asymptotically efficient algorithm

This section focuses on how to design and analyze the optimal
identification algorithm under quantized observations. To realize
it, we give a criterion, the CR lower bound under quantized ob-
servations, based on which an asymptotically efficient algorithm
is constructed.

4.1. Cramér–Rao lower bound

Aiming at the system (1) with quantized observations (2), the
following proposition establishes the CR lower bound of param-
eter estimates.
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roposition 1. For the system (1) with quantized observations (2),
he CR lower bound is

k =

(
k∑

l=1

ρlφlφ
T
l

)−1

, (20)

here

l =

m+1∑
i=1

h2
i,l

Hi,l
, (21)

ith hi,l and Hi,l defined in (6) for i = 1, . . . ,m + 1.

The proof of Proposition 1 is supplied in Section 5.3. To un-
derstand the relationship between identification under quan-
tized observations and the one under accurate observations, the
following proposition is given.

Proposition 2. Under Assumption 2.3, ρl defined in (21) satisfies
limmaxi=1,...,m+1(Ci−Ci−1)→0 ρl =

1
σ2 where σ 2 is the covariance of dl.

The proof of Proposition 2 is supplied in Section 5.4.

Remark 4.1. The CR lower bound of the system (1) with accurate

observations is
(

1
σ2

∑k
l=1 φlφ

T
l

)−1
. Combined it with Proposi-

ion 2, we find that the influence of quantized observations on the
dentification effect can be represented by the CR lower bound to
ome extent.

.2. The IBID algorithm

This part will construct an asymptotically efficient algorithm
ith a proper design of weight coefficients on the WQNP algo-
ithm, which is based on CR lower bound.

By the structure of CR lower bound, ∆k defined in (20) can be
ritten recursively as

k = ∆k−1 −
ρk∆k−1φkφ

T
k ∆k−1

1 + ρkφ
T
k ∆k−1φk

. (22)

ince ρk depends on the unknown parameter θ , we estimate it by

se of θ̂k−1 as ρ̂k =
∑m+1

i=1
ĥ2i,k
Ĥi,k

, where Ĥi,k and ĥi,k are defined in
(7).

Note that Pk in recursive least square algorithm could repre-
sent the covariance of the estimation error to some extent, which
enlightens us to design its weight coefficient as the estimate of CR
lower bound coefficients, i.e.,

βk = ρ̂k =

m+1∑
i=1

ĥ2
i,k

Ĥi,k
≜ β̂k. (23)

oreover, noticing (9) and (10) during the structure process of
ewton step, we have βk = −

∑m
i=1 αi,kĥi,k. Therefore, the weight

oefficient of the weighted conversion is designed as

i,k = α̂i,k ≜ −
ĥi,k

Ĥi,k
, i = 1, . . . ,m + 1. (24)

rom Lemma 5.8 in Section 5.5 and the boundness of the estimate
ˆk and the regressor φk, the following proposition can be estab-
ished directly to illustrate the properties of α̂i,k(i = 1, . . . ,m+1)
and β̂k.

Proposition 3. Denote

α̂ = inf
k
min
x∈Ω

(
fm(x)

1 − Fm(x)
+

f1(x)
F1(x)

)
.

hen, β̂k and α̂i,k defined by (23)–(24) satisfy 0 < β̂k < ∞,
−∞ < α̂ < · · · < α̂ < ∞ and α̂ − α̂ ≥ α̂ > 0.
1,k m+1,k m+1,k 1,k

5

Based on the WQNP algorithm and the weight coefficients in
(23)–(24), an information-based identification (IBID) algorithm is
constructed as Algorithm 2.

Algorithm 2 The IBID Algorithm

Beginning with an initial value θ̂0 ∈ Ω and a positive definitive
matrix P̂0 ∈ Rn×n, the algorithm is recursively defined at any
k ≥ 0 as follows:
1: Update of the adaptive weight coefficients:

α̂i,k = −
ĥi,k

Ĥi,k
and β̂k =

m+1∑
i=1

ĥ2
i,k

Ĥi,k
, (25)

where ĥi,k and Ĥi,k are defined as (7).
2: Weighted conversion of the quantized observations:

sk =

m+1∑
i=1

α̂i,kI{Ci−1<yk≤Ci}. (26)

3: Estimation:
θ̂k = ΠP̂−1

k

(
θ̂k−1 + âkP̂k−1φks̃k

)
, (27)

s̃k = sk −

m+1∑
i=1

α̂i,kĤi,k, (28)

âk =
1

1 + β̂kφ
T
k P̂k−1φk

, (29)

P̂k = P̂k−1 − âkβ̂kP̂k−1φ
T
k φkP̂k−1. (30)

Remark 4.2. Different from the WQNP algorithm and the
weighted least square algorithm, the weight coefficients αi,k and
βk of the IBID algorithm are related to the estimates. This leads
to the essential difficulty of algorithm analysis since the prop-
erties of the adaptive weight coefficients and the convergence
of the estimate are interdependent, which make the scalar type
Lyapunov function method no longer applicable. Therefore, we
introduce a matrix type Lyapunov function method to analyze the
convergence rate of the IBID algorithm.

4.3. Convergence properties

The following theorem shows the convergence and the opti-
mal convergence rate of the IBID algorithm.

Theorem 4.1. If Assumptions 2.1–2.3 hold and the noise density
function satisfies

2 min
x∈[Ci−φ̄θ̄ ,Ci+φ̄θ̄ ]

f (x) ≥ max
x∈[Ci−φ̄θ̄ ,Ci+φ̄θ̄ ]

f (x), (31)

or i = 1, . . . ,m, then the IBID algorithm is convergent in both
mean square and almost sure sense, i.e., limk→∞ Eθ̃ T

k θ̃k = 0 and
limk→∞ θ̃k = 0, a.s. Besides, the mean square convergence rate is

E∥θ̃k∥
2

= O
(
1
k

)
.

The proof of Theorem 4.1 is supplied in Section 5.6.

Remark 4.3. The noise condition (31) is mainly used to guaran-
tee that the convergence of the scalar type Lyapunov function.
This keeps in essence f (Ci−φT

k θ̀i,k−1)

f (Ci−φT
k θ̂i,k−1)

> 1
2 in (56) hold for i =

, . . . ,m, where θ̀i,k−1 with φT
k θ̀i,k−1 in the interval between φT

k θ

and φT θ̂ . This point is also the key difficulty in the convergence
k k−1
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nalysis of the IBID algorithm. This will be left as an open ques-
ion. A possibly effective way in the authors’ view is removing
he limitation of the projection and using the covariance matrix
f estimation error to analyze the convergence analysis of the IBID
lgorithm.
According to the proof of Theorems 3.1 and 4.1, the following

orollary is derived directly, which is on the high-rank square
onvergence rate of the IBID algorithm.

orollary 4.1. Under the condition of Theorem 4.1, the IBID
algorithm is convergent in high rank square with E∥θ̃k∥

2r
= o

( 1
k

)
,

for r = 2, 3, . . .

4.4. Asymptotical efficiency

The following theorem shows P̂k of IBID algorithm represents
the covariance of estimation error to some extent.

Theorem 4.2. If Assumptions 2.1–2.3 and (31) hold, then P̂k defined
in (30) has the following property,

lim
k→∞

k(EP̂k − ∆k) = 0.

The proof of Theorem 4.2 is supplied in Section 5.7. The fol-
lowing theorem demonstrates that the IBID algorithm can achieve
the CR lower bound asymptotically, which implies that the IBID
algorithm is asymptotically efficient and optimal.

Theorem 4.3. If Assumptions 2.1–2.3 and (31) hold, then the IBID
algorithm is asymptotically efficient, i.e.,

lim
k→∞

k
(
Eθ̃kθ̃

T
k − ∆k

)
= 0.

The proof of Theorem 4.3 is put in Section 5.8.

5. Proofs of the main results

5.1. Proof of Theorem 3.1

Before proving the convergence of the WQNP algorithm, some
lemmas are collected and established, which are frequently used
in the analysis of convergence.

Lemma 5.1 (Calamai & Moré, 1987). For the bounded convex set
Ω , the projection is defined as ΠQ (x) = argminz∈Ω ∥x− z∥Q for all
x ∈ Rn, where Q is a positive definitive matrix. Then, for all x ∈ R
and x∗

∈ Ω , it holds
ΠQ (x) − x∗


Q ≤ ∥x − x∗∥Q .

Lemma 5.2 (Zhang et al., 2022). Let X1, X2, . . . be any bounded
sequence of vectors in Rn(n ≥ 1). Denote Ak = A0 +

∑k
i=1 XiXT

i
with A0 > 0. Then, it holds that

∑
∞

k=1(X
T
i A

−1
k Xi)2 < ∞.

Lemma 5.3 (Chen, 2002). Let (vk,Fk), (wk,Fk) be two nonnegative
adapted sequences. If E(vk+1|Fk) ≤ vk + wk and E

∑
∞

k=1 wk < ∞,
then vk converges a.s. to a finite limit.

Lemma 5.4 (Zhang et al., 2021). For any given positive integer l
and a, b ∈ R, the following results hold

k∏
i=l+1

(
1 −

a
i

)
= O

((
l
k

)a)
,

k∑
l=1

k∏
i=l+1

(
1 −

a
i

) 1
l1+b =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

O
(

1
ka

)
, a < b,

O
(
ln k
ka

)
, a = b,

O
(

1
b

)
, a > b.
k
6

Lemma 5.5. Under Assumption 2.2, Pk defined in (15) has the
following properties: (i) the inverse of Pk follows P−1

k = P−1
k−1 +

βkφkφ
T
k ; (ii) For any initial P0 > 0,

0 ≤ Pk ≤ Pk−1 and Pk = O
(
1
k

)
.

Proof. From (15), we have P−1
k = P−1

k−1 + βkφkφ
T
k . Then, by

Pk−1P−1
k = In + Pk−1βkφkφ

T
k and iterating the right parts of last

equation, one can get P−1
k = P−1

0 +
∑k

i=1 βiφiφ
T
i , Consequently,

by βi ≥ β > 0 and Assumption 2.2, the conclusion is true. □

Lemma 5.6. If Assumptions 2.2 and 3.1 hold, thenθ̃k+j − θ̃k
 ≤ j(m + 1)|ᾱ|φ̄∥Pk∥, j ≥ 0.

Proof. If j = 0, then the conclusion is true. Otherwise,

∥θ̃k+j − θ̃k∥ = ∥θ̂k+j − θ̂k∥ ≤

k+j∑
l=k+1

∥θ̂l − θ̂l−1∥. (32)

By Lemma 5.1 and (12), we have

∥θ̂l − θ̂l−1∥
2
P−1
l

= ∥ΠP−1
l

(
θ̂l−1 + alPl−1φls̃l

)
− θ̂l−1∥

2
P−1
l

≤∥alPl−1φls̃l∥2
P−1
l

= a2l φ
T
l Pl−1(P−1

l−1 + βlφlφ
T
l )Pl−1φls̃2l

=a2l φ
T
l Pl−1φl(1 + βlφ

T
l Pl−1φl)s̃2l = alφT

l Pl−1φls̃2l .

Noting Pl > 0, we have ∥Pl∥ = λmax(Pl) = λ−1
min(P

−1
l ). By Assump-

tions 2.2 and 3.1, 0 < al ≤ 1, ∥θ̂l − θ̂l−1∥
2

≤

∥θ̂l − θ̂l−1∥
2
P−1
l

/λmin(P−1
l ), and Lemma 5.5, we can get

∥θ̂l − θ̂l−1∥ ≤

√
alφT

l Pl−1φls̃2l /λmin(P−1
l )

≤

√
alφT

l Pl−1φl|s̃l|∥Pl∥
1
2 ≤ 2|ᾱ|φ̄∥Pl−1∥ ≤ 2|ᾱ|φ̄∥Pk∥.

Then, taking it into (32) yields this lemma. □

Proof of Theorem 3.1. The proof is based on a scalar type
Lyapunov function method, divided into the following three parts.

Part I: The mean square convergence properties.
Denote a scalar type Lyapunov function as Vk = θ̃ T

k P
−1
k θ̃k. From

(12), (14) and Lemma 5.1, we have

Vk =

(
ΠP−1

k

(
θ̂k−1 + akPk−1φks̃k

)
− θ

)T
P−1
k

·

(
ΠP−1

k

(
θ̂k−1 + akPk−1φks̃k

)
− θ

)
≤
(
θ̃k−1 + akPk−1φks̃k

)T
P−1
k

(
θ̃k−1 + akPk−1φks̃k

)
≤θ̃ T

k−1P
−1
k−1θ̃k−1 + βkθ̃

T
k−1φkφ

T
k θ̃k−1 + 2akφT

k θ̃k−1s̃k
+ a2kφ

T
k Pk−1φks̃2k + 2βkakφT

k Pk−1φkφ
T
k θ̃k−1s̃k

+ a2kβkφ
T
k Pk−1φkφ

T
k Pk−1φks̃2k

≤Vk−1 + βkθ̃
T
k−1φkφ

T
k θ̃k−1 + 2φT

k θ̃k−1s̃k
+ akφT

k Pk−1φks̃2k . (33)

By Esk =
∑m

i=1 αi,kHi,k, F̂0,k = F0,k = 0, F̂m+1,k = Fm+1,k = 1 and
the differential mean value theorem,

E[s̃k|Fk−1] =

m+1∑
i=1

αi,k

(
Hi,k − Ĥi,k

)
=

m∑
i=1

(αi+1,k − αi,k)
(
F (Ci − φT

k θ̂k−1) − F
(
Ci − φT

k θ
))
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≤

= −

m∑
i=1

(αi+1,k − αi,k)f (Ci − φT
k ξi,k)φT

k θ̃k−1

= −

m∑
i=1

(αi+1,k − αi,k)f̌i,kφT
k θ̃k−1, (34)

here ξi,k with φT
k ξi,k in the interval between φT

k θ and φT
k θ̂k−1

uch that F (Ci − φT
k θ̂k−1) − F (Ci − φT

k θ ) = −f (Ci − φT
k ξi,k)φT

k θ̃k−1,
and f̌i,k ≜ f (Ci − φT

k ξi,k). Then from (33)–(34) and |s̃k| ≤ 2ᾱ, we
have

EVk ≤ EVk−1 + Eβkθ̃
T
k−1φkφ

T
k θ̃k−1 + EakφT

k Pk−1φks̃2k

− 2
m∑
i=1

E(αi+1,k − αi,k)f̌i,kθ̃ T
k−1φkφ

T
k θ̃k−1

≤ EVk−1 + E

(
1 −

2
∑m

i=1(αi+1,k − αi,k)f̌i,k
βk

)
· βkθ̃

T
k−1φkφ

T
k θ̃k−1 + 4α2EakφT

k Pk−1φk

≤ Eθ̃ T
k−1P

−
1
2

k−1

(
In +

(
1 −

2
∑m

i=1(αi+1,k − αi,k)f̌i,k
βk

)
P

1
2
k−1

· βkφkφ
T
k P

1
2
k−1

)
P

−
1
2

k−1θ̃k−1 + 4α2akφT
k Pk−1φk. (35)

Denote

f = min
1≤i≤m

min
x∈[Ci−φ̄θ̄ ,Ci+φ̄θ̄ ]

f (x). (36)

From Assumption 2.3, we have f > 0 and f̌i,k ≥ f . By Assump-
ion 3.1 and (35), we get

Vk ≤Eθ̃ T
k−1P

−
1
2

k−1

(
In +

(
1 −

2αf

β

)
P

1
2
k−1βkφkφ

T
k P

1
2
k−1

)
P

−
1
2

k−1θ̃k−1

+ 4α2akφT
k Pk−1φk, (37)

where 1 − 2αf /β ≤ 1/n from Assumption 3.1 and (36).
Next, we show the mean square convergence of WQNP algo-

ithm in two cases, 1 −
2αf
β

≤ 0 and 1 −
2αf
β

> 0.

Case I-1: 1 −
2αf
β

≤ 0.
Noticing P−1

k = P−1
k−1

(
In + βkPk−1φkφ

T
k

)
, we have

akβkφ
T
k Pk−1φk =

(⏐⏐P−1
k

⏐⏐− ⏐⏐P−1
k−1

⏐⏐)/⏐⏐P−1
k

⏐⏐ and ⏐⏐P−1
k

⏐⏐ =
⏐⏐P−1

k−1

⏐⏐ (1+
βkφ

T
k Pk−1φk

)
. Then,

k∑
l=1

alβlφ
T
l Pl−1φl =

k∑
l=1

⏐⏐P−1
l

⏐⏐− ⏐⏐P−1
l−1

⏐⏐⏐⏐P−1
l

⏐⏐ ≤

k∑
l=1

∫ ⏐⏐⏐P−1
l

⏐⏐⏐⏐⏐⏐P−1
l−1

⏐⏐⏐
dx
x

≤ log
⏐⏐P−1

k

⏐⏐− log
⏐⏐P−1

0

⏐⏐ . (38)

rom Lemma 5.2, we have
k∑

l=1

(
βlφ

T
l Pl−1φl

)2
< ∞. (39)

nd by (37) and (38), we get

Vk ≤EVk−1 + 4α2akφT
k Pk−1φk

≤EV0 +

k∑
l=1

4α2

β

k∑
l=1

alβkφ
T
l Pl−1φl = O

(
log
⏐⏐P−1

k

⏐⏐) .
hen, combining Lemma 5.5 gives

θ̃ T θ̃ ≤ EV /λ
(
P−1)

= O log k/k . (40)
k k k min k ( )

7

Case I-2: 1 −
2αf
β

> 0. In this case, from (37) we have

EVk ≤ Eθ̃ T
k−1P

−
1
2

k−1

(
1 +

(
1 −

2αf

β

)
βkφ

T
k Pk−1φk

)
P

−
1
2

k−1θ̃k−1

+ 4α2akφT
k Pk−1φk

≤

(
1 +

(
1 −

2αf

β

)
βkφ

T
k Pk−1φk

)
EVk−1 + 4α2akφT

k Pk−1φk

k∏
l=1

(
1 +

(
1 −

2αf

β

)
βlφ

T
l Pl−1φl

)
EV0

+ 4α2
k∑

l=1

k∏
i=l+1

(
1 +

(
1 −

2αf

β

)
βiφ

T
i Pi−1φi

)
alφT

l Pl−1φl. (41)

First, we estimate the first item on the right side of (41) by (38),
(39) and Lemma 5.5. By 0 < ak ≤ 1, we have

k∏
l=1

(
1 +

(
1 −

2αf

β

)
βlφ

T
l Pl−1φl

)
=e

∑k
l=1 log

(
1+(1−2αf /β)βlφ

T
l Pl−1φl

)
∼e(1−2αf /β)

∑k
l=1 βlφ

T
l Pl−1φl

=e
(
1−

2αf
β

)∑k
l=1 alβlφ

T
l Pl−1φl

· e
(
1−

2αf
β

)∑k
l=1 al(βlφ

T
l Pl−1φl)2

≤e(1−2αf /β)
(
log
⏐⏐⏐P−1

k

⏐⏐⏐−log
⏐⏐⏐P−1

0

⏐⏐⏐)
· M

=M
(⏐⏐P−1

k

⏐⏐/⏐⏐P−1
0

⏐⏐)(1−2αf /β)
, (42)

where M is a constant related to (39).
Then, we estimate the second item on the right side of (41).

Noticing (39) and (42), we have

4α2
k∑

l=1

k∏
i=l+1

(
1 +

(
1 −

2αf

β

)
βiφ

T
i Pi−1φi

)
alφT

l Pl−1φl

≤
4α2

β

k∑
l=1

k∏
i=l+1

(
1 +

(
1 −

2αf

β

)
βiφ

T
i Pi−1φi

)
alβlφ

T
l Pl−1φl

≤
4Mα2

β

⏐⏐P−1
k

⏐⏐(1− 2αf
β

) k∑
l=1

⏐⏐P−1
l

⏐⏐− ⏐⏐P−1
l−1

⏐⏐⏐⏐P−1
l

⏐⏐2−2αf /β

≤
4Mα2

β

(
1 −

2αf
β

) (⏐⏐P−1
k

⏐⏐⏐⏐P−1
0

⏐⏐
)1−2αf /β

. (43)

Then, taking (42) and (43) into (41) gives

EVk = O
(⏐⏐P−1

k

⏐⏐1−2αf /β
)

.

Hence, for 1 − 2αf /β > 0, combining Lemma 5.5 gives

Eθ̃ T
k θ̃k ≤ E

Vk

λmin
(
P−1
k

) = O
(
kn(1−2αf /β)−1

)
, (44)

where Assumption 3.1 assures n
(
1 − 2αf /β

)
− 1 < 0.

Therefore, combining (40) and (44) yields

Eθ̃ T
k θ̃k =

⎧⎨⎩O
( log k

k

)
, if

2αf
β

≥ 1,

O
(
kn(1−2αf /β)−1

)
, if

2αf
β

< 1.
(45)

Part II: This part focuses on the convergence property of the
WQNP algorithm in the high rank square.
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When r = 2, from (33), we have

V 2
k ≤

(
Vk−1 + (φT

k θ̃k−1)2 + 2φT
k θ̃k−1s̃k + akφT

k Pk−1φks̃2k
)2

≤V 2
k−1 + (βkθ̃

T
k−1φkφ

T
k θ̃k−1)2 + 2(φT

k θ̃k−1)2s̃2k
+ a2k(φ

T
k Pk−1φk)2s̃4k + 4βk(θ̃ T

k−1φk)3s̃k
+ 2Vk−1

(
βkθ̃

T
k−1φkφ

T
k θ̃k−1 + 2φT

k θ̃k−1s̃k
)

+ 2Vk−1akφT
k Pk−1φks̃2k

+ akφT
k Pk−1φks̃2k

(
βk(θ̃ T

k−1φk)2 + 2φT
k θ̃k−1s̃k

)
.

Noticing |s̃k| ≤ (m + 1)|ᾱ|, ∥φk∥ ≤ φ̄, (36), (45), Assumption 2.1
and Lemma 5.5, we have

EV 2
k ≤EV 2

k−1 + 2EVk−1(βk − 2
m∑
i=1

(αi+1,k − αi,k)f̌i,k)θ̃ T
k−1φkφ

T
k θ̃k−1

+ O
(
E∥θ̃k−1∥

2)
≤EV 2

k−1 + 2
(
1 − 2αf /β

)
EVk−1βkθ̃

T
k−1φkφ

T
k θ̃k−1

+ O
(
E∥θ̃k−1∥

2) . (46)

Next, we consider this problem from the following two cases,
i.e., 1 − 2αf /β ≤ 0 and 1 − 2αf /β > 0.

ase II-1: 1 − 2αf /β ≤ 0. From (45) and (46), we have

V 2
k ≤EV 2

k−1 + O
(
E∥θ̃k−1∥

2)
≤ EV 2

k−1 + O
(
log k
k

)
=EV0 + O

(
k∑

l=1

log l
l

)
= O

(
log2 k

)
,

which together with Lemma 5.5 yields

E∥θ̃k∥
4

≤
EV 2

k

λ2
min

(
P−1
k

) = O
(
log2 k
k2

)
. (47)

ase II-2: 1 − 2αf /β > 0. By (44) and (46), we have

V 2
k ≤

(
1 + 2

(
1 − 2αf /β

)
βkφ

T
k Pk−1φk

)
EV 2

k−1

+ O
(
kn(1−2αf /β)−1

)
≤

k∏
l=1

(
1 + 2

(
1 −

2αf

β

)
βlφ

T
l Pl−1φl

)
EV 2

0

+ O

(
k∑

1=1

k∏
i=l+1

(
1 + 2

(
1 −

2αf

β

)
βiφ

T
i Pi−1φi

)
· ln(1−2αf /β)−1

)
= O

(
k2n(1−2αf /β)

)
. (48)

or 1 − 2αf /β > 0, combining Lemma 5.5 and (48) gives

E∥θ̃k∥
4

≤
EVk

λ2
min

(
P−1
k

) = O
(
k2n(1−2αf /β)−2

)
. (49)

herefore, from (47) and (49), we have

∥θ̃k∥
2

=

⎧⎨⎩O
(

log2 k
k2

)
, if

2αf
β

≥ 1,

O
(
k2n(1−2αf /β)−2

)
, if

2αf
β

< 1.

Similarly, for any r ≥ 3, we can get

E∥θ̃k∥
2r

=

⎧⎨⎩O
(

(log k)r
kr

)
, if

2αf
β

= 1,

O
(
krn(1−2αf /β)−r

)
, if

2αf
β

< 1,

here Assumption 3.1 keeps rn
(
1 − 2αf /β

)
− r < 0.
8

In summary, there exists µ < ∞ such that (18) holds for any
r ≥ 1, which implies (17).

Part III: The almost sure convergence of WQNP algorithm is
considered in this part. Denote V̄k =

Vk
λmin(P

−1
k )

. By (37) and
Lemma 5.5, we have

E[V̄k|Fk−1] ≤V̄k−1 + 2α2akφT
k Pk−1φk/λmin(P−1

k−1)

≤V̄k−1 + O
(
1/k2

)
, for 1 − 2αf /β ≤ 0;

E[V̄k|Fk−1] ≤V̄k−1 +

(
1 −

2αf

β

)
θ̃ T
k−1βkφkφ

T
k θ̃k−1

λmin(P−1
k )

+ 2α2akφT
k Pk−1φk/λmin(P−1

k−1)

≤V̄k−1 +
(
1 − 2αf /β

)
β̄φ̄2

∥θ̃k−1∥
2/k

+ O
(
1/k2

)
, for 1 − 2αf /β > 0.

From (45), we have E ∥θ̃k−1∥
2

k = O
(
k−2+n(1−2αf /β)

)
when 1 −

αf /β > 0. From
∑

∞

k=1 k
−2+n(1−2αf /β) < ∞,

∑
∞

k=1 1/k
2 < ∞

nd Lemma 5.3, V̄k converges almost surely to a bounded limit.
rom (40) and (44), we have EV̄k → 0, k → ∞. Then, there is
subsequence of V̄k that converges almost surely to 0. Noticing

∥θ̃k∥
2

≤ V̄k, θ̃k almost surely converges to 0. □

5.2. Proof of Theorem 3.2

Since f̌i,k ≥ infk min1≤i≤m minϑ∈Ω f (Ci − φT
k ϑ) ≜ fφ , noticing

(35) we have

EVk ≤Eθ̃ T
k−1P

−
1
2

k−1

(
In +

(
1 − 2αfφ/β

)
P

1
2
k−1βkφkφ

T
k P

1
2
k−1

)
P

−
1
2

k−1θ̃k−1

+ 4α2akφT
k Pk−1φk

≤EVk−h −

(
2αfφ/β − 1

) k−1∑
l=k−h

Eθ̃ T
l βl+1φl+1φ

T
l+1θ̃l

+

k−1∑
l=k−h

4α2al+1φ
T
l+1Plφl+1, (50)

where 2αfφ/β − 1 > 0 by (19). From Assumptions 2.1 and 2.2,
we have ∥θ̃l∥ ≤ 2θ̄ and ∥φl∥ ≤ φ̄. For l = k − h, . . . , k − 1, using
Lemmas 5.5 and 5.6 give

− θ̃ T
l βl+1φl+1φ

T
l+1θ̃l

= − θ̃ T
k−hβl+1φl+1φ

T
l+1θ̃k−h + 2θ̃ T

l βl+1φl+1φ
T
l+1(θ̃l − θ̃k−h)

− (θ̃l − θ̃k−h)Tβl+1φl+1φ
T
l+1(θ̃l−1 − θ̃k−h)

≤ − θ̃ T
k−hβl+1φl+1φ

T
l+1θ̃k−h + 2θ̃ T

l βl+1φl+1φ
T
l+1(θ̃l − θ̃k−h)

= − θ̃ T
k−hβl+1φl+1φ

T
l+1θ̃k−h + O (1/(k − h)) . (51)

By Assumption 3.1, we have
k−1∑

l=k−h

βl+1φl+1φ
T
l+1 ≥ hβδ2In ≥

hβδ2(
∥P−1

0 ∥ + βφ̄2
)
k

·

(
P−1
0 +

k∑
l=1

βlφlφ
T
l

)
≥

hβδ2P−1
k−h(

∥P−1
0 ∥ + βφ̄2

)
k
. (52)

Denote γ =
βδ2(

∥P−1
0 ∥+βφ̄2

) ( 2αfφ
β

− 1
)

> 0. By Lemmas 5.4 and 5.5,

substituting (51) and (52) into (50) gives

EVk ≤EVk−h −

(
2αfφ/β − 1

)
hβδ2/

(
∥P−1

0 ∥ + βφ̄2) k
· Eθ̃ T P−1 θ̃ + O 1/(k − h)
k−h k−h k−h ( )
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H

5

a

0

P

l

L

P

= (1 − hγ /k)EVk−h + O (1/(k − h))

=

⌊
k
h

⌋
−1∏

l=1

(
1 −

hγ
k − lh

)
EV

k−
⌊

k
h

⌋
h

+ O

⎛⎜⎝
⌊

k
h

⌋
−1∑

l=1

l−1∏
q=0

(
1 −

hγ
k − qh

)
1

k − lh

⎞⎟⎠
=O (1/kγ ) + O (1) = O (1) .

hen, by Lemma 5.5, we have

θ̃ T
k θ̃k ≤ EVk/λmin

(
P−1
k

)
= O (1/k) .

hus, the WQNP algorithm has a mean square convergence rate
s O

( 1
k

)
.

5.3. Proof of Proposition 1

Since the noises {dk} are i.i.d., we have

P (s1, s2, . . . , sk|θ) =

k∏
l=1

P (sl|θ) =

k∏
l=1

m+1∑
i=1

Hi,lI{sl=αi,l}.

Denote the log-likelihood function as

lk(θ ) = logP (s1, s2, . . . , sk|θ) =

k∑
l=1

logP (sl|θ)

=

k∑
l=1

m+1∑
i=1

log(Hi,l)I{sl=αi,l}.

Noticing that ∂ logHi,l
∂θ

= −
hi,l
Hi,l

φl, and continuing the partial pro-

ess, we have ∂2 logHi,l
∂θ2

=
h′
i,lHi,l−h2i,l

H2
i,l

φlφ
T
l , where h′

i,l = f ′(Ci−φT
l θ )−

′(Ci−1 − φT
l θ ) for i = 2, . . . ,m and h′

1,l = f ′(C1 − φT
l θ ), h′

m+1,l =

−f ′(Cm − φT
l θ ) with f ′(x) = ∂ f (x)/∂x. Hence,

∑m+1
i=1 h′

i,l = 0 and

∂2lk
∂θ∂θ

=

k∑
l=1

[
m+1∑
i=1

h′

i,lHi,l − h2
i,l

H2
i,l

I{sl=αi,l}

]
φlφ

T
l ,

ogether with EI{sl=αi,l} = Hi,l, the CR lower bound is

k =

(
−E

∂2lk
∂θ2

)−1

=

(
−

k∑
l=1

(
m+1∑
i=1

h′

i,lHi,l − h2
i,l

H2
i,l

EI{sl=αi,l}

)
φlφ

T
l

)−1

=

(
−

k∑
l=1

(
m+1∑
i=1

h′

i,lHi,l − h2
i,l

Hi,l

)
φlφ

T
l

)−1

=

((
−

k∑
l=1

m+1∑
i=1

h′

i,l +

k∑
l=1

m+1∑
i=1

h2
i,l

Hi,l

)
φlφ

T
l

)−1

=

(
k∑

l=1

m+1∑
i=1

h2
i,l

Hi,l
φlφ

T
l

)−1

.

5.4. Proof of Proposition 2

Since f ′(x) = −
x

σ2 f (x) for the normally density function f (x)
ith covariance σ 2, we have

lim
C→0

ρl = lim
maxi=1,...,m+1(Ci−Ci−1)→0

m+1∑ h2
i,l

H

i=1 i,l

9

=

∫
∞

−∞

(
f ′(x)

)2
f (x)

dx =

∫
∞

−∞

(
−

x
σ 2

)2
f (x)dx =

1
σ 2 ,

ence, Proposition 2 holds.

.5. Proof of Proposition 3

Before proving Proposition 3, we give the following lemma to
nalyze the properties of hi,k and Hi,k.

Lemma 5.7. Let g(x, y) =

{
f (x)−f (y)
F (x)−F (y) , if x ̸= y;

−
y

σ2 , if x = y.
Then, gx(x, y) <

when x ̸= y.

roof. Denote ḡ(x, y) =
x

σ2 (F (x) − F (y)) + (f (x) − f (y)). Noticing
that ḡ(y, y) = 0 and ḡ ′

x(x, y) = F (x) − F (y)/σ 2, we have ḡ(x, y) >

0 when x ̸= y. Since f ′(x) = −xf (x)/σ 2, we get

g ′

x(x, y) = ((f (x) − f (y))/(F (x) − F (y)))′x

=
−

x
σ2 f (x)(F (x) − F (y)) − f (x)(f (x) − f (y))

(F (x) − F (y))2

= −f (x)ḡ(x, y)/(F (x) − F (y))2.

So, we have g ′
x(x, y) < 0 when x ̸= y. □

Based on Lemma 5.7, we give the following lemma, which can
ead to Proposition 3 directly.

emma 5.8. For x ∈ (−∞, ∞) and i = 1, . . . ,m + 1, denote
hi(x) = f (Ci − x) − f (Ci−1 − x) and Hi(x) = F (Ci − x) − F (Ci−1 − x).
Then, for i = 2, . . . ,m + 1,

hi(x)
Hi(x)

<
hi−1(x)
Hi−1(x)

. (53)

roof. From Lemma 5.7 and Ci > Ci−1 > Ci−2 for i = 2, . . . ,m+1,
we have f (Ci−x)−f (Ci−1−x)

F (Ci−x)−F (Ci−1−x) <
f (Ci−2−x)−f (Ci−1−x)
F (Ci−2−x)−F (Ci−1−x) , which is equivalent

to (53). □

5.6. Proof of Theorem 4.1

From the definition of Hi,k and Ĥi,k in (6) and (7), there exists
θ̀i,k−1 with φT

k θ̀i,k−1 in the interval between φT
k θ and φT

k θ̂k−1 such
that

E[s̃k|Fk−1] =

m+1∑
i=1

α̂i,k

(
Hi,k − Ĥi,k

)
=

m∑
i=1

(
α̂i+1,k − α̂i,k

) (
F̂i,k − Fi,k

)
= −

m∑
i=1

(
α̂i+1,k − α̂i,k

)
f̀i,kφT

k θ̃k−1, (54)

where f̀i,k ≜ f (Ci − φT
k θ̀i,k−1) ≥ minx∈[Ci−φ̄θ̄ ,Ci+φ̄θ̄] f (x). Denote

λk =

m∑
i=1

(
α̂i+1,k − α̂i,k

)
f̀i,k/β̂k. (55)

By the continuity of f (x) and F (x), λk and β̂k are bounded. From
(7), (25), (31) and (55),

λk =

∑m
i=1

(
α̂i+1,k − α̂i,k

)
f̀i,k∑m+1 ĥ2i,k

=

∑m
i=1

(
α̂i+1,k − α̂i,k

)
f̀i,k∑m

i=1

(
α̂i+1,k − α̂i,k

)
f̂i,k
i=1 Ĥi,k
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L

λ

T
f

N

E

F

E

S
e
p

E

w

E

θ

θ

B

E

N
∥

f

E

∑
E

a

≥

∑m
i=1

(
α̂i+1,k − α̂i,k

)
minx∈[Ci−φ̄θ̄ ,Ci+φ̄θ̄ ] f (x)∑m

i=1

(
α̂i+1,k − α̂i,k

)
maxx∈[Ci−φ̄θ̄ ,Ci+φ̄θ̄ ] f (x)

≥
1
2
. (56)

et

= inf
k

λk, λ = sup
k

λk, α̂ = sup
k

max
i=1,...,m+1

|α̂i,k|; (57)

β̂ = inf
k

β̂k, β̂ = sup
k

β̂k. (58)

hen, it can be seen that λ > 1/2, β̂ > 0, λ < ∞ and β̂ < ∞

rom the boundness of θ̂k and φk.
Let V̂k = θ̃ T

k P̂
−1
k θ̃k. Similar to (33), we have

V̂k ≤V̂k−1 + β̂k(φT
k θ̃k−1)2 + 2φT

k θ̃k−1s̃k + âkφT
k P̂k−1φks̃2k . (59)

By (54)–(59), we have

EV̂k ≤EV̂k−1 + Eβ̂kθ̃
T
k−1φkφ

T
k θ̃k−1 + EâkφT

k P̂k−1φks̃2k

+ 2E
m+1∑
i=1

α̂i,k

(
Hi,k − Ĥi,k

)
φT
k θ̃k−1

≤EV̂k−1 + E (1 − 2λk) β̂kθ̃
T
k−1φkφ

T
k θ̃k−1 + EâkφT

k P̂k−1φks̃2k
≤EV̂k−1 + E

(
1 − 2λ

)
β̂kθ̃

T
k−1φkφ

T
k θ̃k−1

+ EâkφT
k P̂k−1φks̃2k, (60)

where 1 − 2λ ≤ 0.
Next, we discuss the convergence rate based on the higher

moments and covariance of estimation errors.
First, we show the mean square convergence rate of IBID

algorithm can reach O
( log k

k

)
. Similar to (38), we have

k∑
l=1

âlβ̂lφ
T
l P̂l−1φl ≤ log

⏐⏐⏐P̂−1
k

⏐⏐⏐− log
⏐⏐⏐P̂−1

0

⏐⏐⏐ . (61)

oticing |s̃k| ≤ 2α̂, (60) and (61), we have

V̂k ≤EV̂k−1 + EâkφT
k P̂k−1φks̃2k

≤EV̂0 +
4α̂

2

β̂

k∑
l=1

Eâlβ̂kφ
T
l P̂l−1φl = O

(
logE

⏐⏐⏐P̂−1
k

⏐⏐⏐) .

From (58) and Assumption 2.2, we get

P̂k = O (1/k) and P̂−1
k = O (k) . (62)

rom (62), we have

θ̃ T
k θ̃k ≤ EV̂k/λmin

(
P̂−1
k

)
= O (log k/k) . (63)

econd, we establish the higher moments convergence rate of
stimation errors (i.e., E∥θ̃k∥

2r , r ≥ 2) similarly to Part II in the
roof of Theorem 3.1.
Based on (59), (60) and (63), similar to (46) we can get

V̂ 2
k ≤EV̂ 2

k−1 + 2EV̂k−1(βk − 2
m∑
i=1

(α̂i+1,k − α̂i,k)f̀i,k)θ̃ T
k−1φkφ

T
k θ̃k−1

+ O
(
E∥θ̃k−1∥

2)
≤EV̂ 2

k−1 + 2
(
1 − 2λ

)
EV̂k−1βkθ̃

T
k−1φkφ

T
k θ̃k−1 + O

(
E∥θ̃k−1∥

2)
≤EV̂ 2

k−1 + O
(
log k
k

)
≤ EV̂ 2

0 + O

(
k∑

l=1

log l
l

)
=O

(
log2 k

)
,

hich together with Lemma 5.5 yields

∥θ̃ ∥
4

≤ EV̂ 2/λ2 (
P−1)

= O
(
log2 k/k2

)
.
k k min k

10
Similar, for any r ≥ 1, we can get

E∥θ̃k∥
2r

= O
(
(log k)r/kr

)
, ∀r = 1, 2, 3 . . . (64)

Third, we construct a matrix type Lyapunov function by the
covariance Eθ̃kθ̃

T
k of the estimation errors to prove that the mean

square convergence rate of the IBID algorithm reaches O
( 1
k

)
. Let

k = θ̂k−1 + âkP̂k−1φks̃k and θ̄k = θk − θ . Then, θ̂k = ΠP−1
k

(θk) and

¯k = θ̃k−1 + âkP̂k−1φks̃k. (65)

ased on (62), (64) and (65), we have

∥θ̄k∥
2r

= O
(
(log k)r/kr

)
, r = 1, 2, 3 . . . (66)

Without loss of generality, we assume θ ∈ Ω − ∂Ω , where ∂Ω

is the edge set of Ω . Denote ω = minω∈∂Ω ∥ω − θ∥ > 0. Then by
Markov inequality,

P (θk /∈ Ω) ≤ P
(
∥θk − θ∥ ≥ ω

)
= P

(
∥θ̄k∥ ≥ ω

)
= P

(
∥θ̄k∥

2r
≥ ω2r)

≤ E∥θ̄k∥
2r/ω2r . (67)

oticing ∥θ̄k − θ̃k∥ = 0 when θk ∈ Ω , and ∥θ̄k − θ̃k∥ ≤

âkP̂k−1φks̃k∥ = O
( 1
k

)
when θk /∈ Ω , we have

E(θ̄k − θ̃k)(θ̄k − θ̃k)T ≤ E∥θ̄k − θ̃k∥
2In

≤ O
(
1/k2

)
· P (θk /∈ Ω) . (68)

For a ∈ Rn and b ∈ Rn, we have abT + baT ≤ 2
√
aTabTbIn. Then,

rom (66), (67) and (68), we have

θ̃kθ̃
T
k =Eθ̄kθ̄

T
k + E(θ̃k − θ̄k)θ̄ T

k + Eθ̄k(θ̃k − θ̄k)T

+ E(θ̄k − θ̃k)(θ̄k − θ̃k)T

≤Eθ̄kθ̄
T
k + 2

√
Eθ̄ T

k θ̄k · E(θ̄k − θ̃k)T (θ̄k − θ̃k)In

≤Eθ̄kθ̄
T
k + O

(
1/k3/2

)√
P (θk /∈ Ω) + O

(
1/k2

)
· P (θk /∈ Ω)

=Eθ̄kθ̄
T
k + o

(
1/k2

)
. (69)

By (7) and (24), we have E
[
s̃2k
⏐⏐Fk−1

]
=

∑m+1
i=1 α̂2

i,kHi,k and∑m+1
i=1 α̂i,kĤi,k = 0. Then, by (54), (62), (65), (69), E[s̃k|Fk−1] =
m+1
i=1 α̂i,kHi,k and Assumptions 2.1–2.2,

θ̃kθ̃
T
k ≤ Eθ̃k−1θ̃

T
k−1 + E

m+1∑
i=1

α̂2
i,kHi,kâ2k P̂k−1φkφ

T
k P̂k−1

+ E
m+1∑
i=1

α̂i,k(Hi,k − Ĥi,k)âkθ̃k−1φ
T
k P̂k−1

+ E
m+1∑
i=1

α̂i,k(Hi,k − Ĥi,k)âkP̂k−1φkθ̃
T
k−1 + o

(
1
k2

)
≤ Eθ̃k−1θ̃

T
k−1 − Eθ̃k−1θ̃

T
k−1akβkφkφ

T
k Pk−1

− EakPk−1βkφkφ
T
k θ̃k−1θ̃

T
k−1 + Eθ̃k−1θ̃

T
k−1φkφ

T
k

·
(
βkakPk−1 −

m∑
i=1

(
α̂i+1,k − α̂i,k

)
f̀i,kâkP̂k−1

)
+ E

(
βkakPk−1 −

m∑
i=1

(
α̂i+1,k − α̂i,k

)
f̀i,kâkP̂k−1

)
· φkφ

T
k θ̃k−1θ̃

T
k−1 + O

(
1/k2

)
, (70)

where Pk is generated by (15) with βk =
∑m+1

i=1
h2i,k
Hi,k

, αi,k = −
hi,k
Hi,k

nd ak =
(
1 + βkφ

T
k Pk−1φk

)−1. Then, by fm+1,k = f0,k = 0 and (6),
we have β = −

∑m+1
α

(
f − f

)
=
∑m (

α − α
)

k i=1 i,k i,k i−1,k i=1 i+1,k i,k
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=

=

=

=
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F
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T
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c
v
e
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D

N

w
r
m

5

E

i,k. From Assumption 2.2, we have

k = O (1/k) and P−1
k = O (k) . (71)

enote αi(x) = −
f (Ci−x)−f (Ci−1−x)
F (Ci−x)−F (Ci−1−x) . Then, αi,k = αi(φkθ ), α̂i,k =

αi(φkθ̂k−1). From the continuous differentiability of f (·) and F (·),
e get αi(·) is the continuous differentiable. From (34), (62), (71)
nd ak, âk ∈ (0, 1),βkakPk−1 −

m∑
i=1

(
α̂i+1,k − α̂i,k

)
f̀i,kâkP̂k−1


O
(
1
k

)
·

⏐⏐⏐⏐⏐
m∑
i=1

(
αi+1,k − αi,k

)
fi,k −

m∑
i=1

(
α̂i+1,k − α̂i,k

)
f̀i,k

⏐⏐⏐⏐⏐
=O

(
1
k

)
·

⏐⏐⏐⏐⏐
m∑
i=1

(
αi+1,k − αi,k

) (
fi,k − f̀i,k

)⏐⏐⏐⏐⏐
+ O

(
1
k

)
·

⏐⏐⏐⏐⏐
m+1∑
i=1

(
αi,k − α̂i,k

) (
f̀i,k − f̀i−1,k

)⏐⏐⏐⏐⏐
O
(
1
k

)
·

⏐⏐⏐⏐ m+1∑
i=1

(
αi+1,k − αi,k

)
f ′(ζ̀i,k)φT

k (θ̆k−1 − θ )
⏐⏐⏐⏐

+ O
(
1
k

)
·

⏐⏐⏐⏐ m+1∑
i=1

α′

i (ξ̂i,k)φ
T
k θ̃k

(
f̀i,k − f̀i−1,k

) ⏐⏐⏐⏐
=O (1/k) · ∥θ̃k∥, (72)

where ξ̂i,k is between φT
k θ and φT

k θ̂k−1, ζ̀i,k is between Ci−φT
k θ̀i,k−1

and Ci − φT
k θ , f̀i,k and θ̀i,k−1 are denoted as (54). Then, based on

(66), we have

E

(
βkakPk−1 −

m∑
i=1

(
α̂i+1,k − α̂i,k

)
f̀i,kâkP̂k−1

)
θ̃k−1θ̃

T
k−1φkφ

T
k

+ Eφkφ
T
k θ̃k−1θ̃

T
k−1

(
βkakPk−1 −

m∑
i=1

(
α̂i+1,k − α̂i,k

)
f̀i,kâkP̂k−1

)

≤O
(
1
k

)
· E∥θ̃k∥

3
≤ O

(
1
k

)
·

√
E∥θ̃k∥2 · E∥θ̃k∥4

O (1/k) ·

√
O
(
log3 k/k3

)
o
(
1/k2

)
. (73)

y (71) and Pk = Pk−1 − akPk−1βkφkφ
T
k Pk−1, taking (73) into (70)

yields

Eθ̃kθ̃
T
k ≤Eθ̃k−1θ̃

T
k−1 − Eθ̃k−1θ̃

T
k−1akβkφkφ

T
k Pk−1

− EakPk−1βkφkφ
T
k θ̃k−1θ̃

T
k−1 + O

(
1/k2

)
≤(In − akPk−1βkφkφ

T
k )Eθ̃k−1θ̃

T
k−1

· (In − akβkφkφ
T
k Pk−1) + O

(
1/k2

)
≤PkP−1

k−1Eθ̃k−1θ̃
T
k−1P

−1
k−1Pk + O

(
1/k2

)
=PkP−1

0 Eθ̃0θ̃
T
0 P

−1
0 Pk + O

(
k∑

l=1

PkP−1
l

1
l2
P−1
l Pk

)
=O (1/k) .

herefore, E∥θ̃k∥
2

= tr(Eθ̃kθ̃
T
k ) = O

( 1
k

)
. □

emark 5.1. The key of this proof is the following three point.
irst, we introduce high-order moments of estimation errors and
he scalar type Lyapunov function following Zhang et al. (2021)
o overcome the difficulty that the weight coefficients αi,k and βk
are stochastic and coupled with estimates. However, this method
11
can only reach the convergence rate of O
( log k

k

)
due to the loss

of matrix scaling to constant coefficients. In order to solve it, a
matrix type Lyapunov function (i.e., the covariance of estimation
errors) is constructed to prove the convergence rate can be O

( 1
k

)
.

hird, it is noticing that the projection operator makes it unable to
irectly iterate the covariance of estimation errors. Therefore, we
alculate the difference between the projection and no-projection
alues by Markov inequality, and then, estimate the covariance of
stimation errors with the no-projection value.

.7. Proof of Theorem 4.2

By Assumption 2.2 and (20), ∆k =

(∑k
l=1 ρlφlφ

T
l

)−1
= O

( 1
k

)
.

enote β(x) =
∑m+1

i=1
(f (Ci−x)−f (Ci−1−x))

2

F (Ci−x)−F (Ci−1−x) . Then, ρk = β(φT
k θ ) and

β̂k = β(φT
k θ̂k−1). By Assumption 2.2 and the continuity of f (x) and

F (x), there exists ζ̂k that is between φT
k θ̂k−1 and φT

k θ̂k such that⏐⏐⏐β̂k − ρk

⏐⏐⏐ =

⏐⏐⏐β(φT
k θ̂k−1) − β(φT

k θ )
⏐⏐⏐

=

⏐⏐⏐β ′(ζ̂k)φT
k θ̃k−1

⏐⏐⏐ = O
(
∥θ̃k−1∥

)
. (74)

From Theorem 4.1, we have E∥θ̃l−1∥ ≤

√
E∥θ̃l−1∥

2 = O
(

1
√
l

)
.

oticing ∥φk∥ ≤ φ̄ and ∆k = O (1/k), we have ∆
1
2
k P̂k∆

1
2
k = o(1)

and ∆
1
2
k
∑k

l=1 O
(
E∥θ̃l−1∥

)
φlφ

T
l ∆

1
2
k = o(1). And then, by ρk = βk

and (74), we have

EkP̂k = Ek

(
∆−1

k +

k∑
l=1

(β̂l − βl)φlφ
T
l + P̂0

)−1

= Ek∆
1
2
k

(
I + ∆

1
2
k

k∑
l=1

O
(
∥θ̃l−1∥

)
φlφ

T
l ∆

1
2
k + ∆

1
2
k P̂0∆

1
2
k

)−1

∆
1
2
k

= Ek∆
1
2
k

(
I−∆

1
2
k

k∑
l=1

O
(
∥θ̃l−1∥

)
φlφ

T
l ∆

1
2
k −∆

1
2
k P̂0∆

1
2
k

+

∞∑
i=2

(−1)i
(

∆
1
2
k

k∑
l=1

O
(
∥θ̃l−1∥

)
φlφ

T
l ∆

1
2
k + ∆

1
2
k P̂0∆

1
2
k

)i
⎞⎠∆

1
2
k

= k∆k + O

(
k∆k

k∑
l=1

O
(
E∥θ̃l−1∥

)
φlφ

T
l ∆k + k∆kP̂0∆k

)
= k∆k + o(1) = k∆k,

here the fifth equality is got by Taylor expansion of the symmet-
ic matrix, i.e., (I + A)−1

= I +
∑

∞

k=1(−1)kAk for the symmetric
atrix A, and the sixth equality is got by Lyapunov inequality.
Therefore, limk→∞ k(EP̂k − ∆k) = 0. □

.8. Proof of Theorem 4.3

Based on Theorem 4.1 and (70), we have

θ̃kθ̃
T
k ≤Eθ̃k−1θ̃

T
k−1 − Eθ̃k−1θ̃

T
k−1akβkφkφ

T
k Pk−1

− EakPk−1βkφkφ
T
k θ̃k−1θ̃

T
k−1 + Eθ̃k−1θ̃

T
k−1φkφ

T
k

·

(
βkakPk−1 −

m∑
i=1

(
α̂i+1,k − α̂i,k

)
f̀i,kâkP̂k−1

)

+ E

(
βkakPk−1 −

m∑
i=1

(
α̂i+1,k − α̂i,k

)
f̀i,kâkP̂k−1

)

· φkφ
T
k θ̃k−1θ̃

T
k−1 + E

m+1∑
Hi,k

(
α̂2
i,kâ

2
k P̂k−1φkφ

T
k P̂k−1
i=1
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w
T

=

=

w
E

=

a
w

∥

F

E

w

6

E

m

w
T
c
m

M
l

7

t
Q
d
p
w
C
s
r
e

−α2
i,kPk−1φkφ

T
k Pk−1

)
+

m+1∑
i=1

h2
i,k

Hi,k
Pk−1φkφ

T
k Pk−1 + o

(
1
k2

)
, (75)

here Pk, βk, αi,k and ak are defined in the proof of Theorem 4.1.
hen, from (62), (71) and (72), we have
m+1∑
i=1

Hi,k

(
α̂2
i,kâ

2
k P̂k−1φkφ

T
k P̂k−1 − α2

i,kPk−1φkφ
T
k Pk−1

)
O
(

1
k2

) m+1∑
i=1

|α̂i,k − αi,k| = O
(

1
k2

) m+1∑
i=1

|α′

i (ξ̂i,k)φ
T
k θ̃k|

O
(
1/k2

)
· ∥θ̃k∥.

here ξ̂i,k is between φT
k θ and φT

k θ̂k−1. From Theorem 4.1 and
∥θ̃k∥ ≤

√
E∥θ̃k∥2 = O

(
1

√
k

)
, we have

E
m+1∑
i=1

Hi,k

(
α̂2
i,kâ

2
k P̂k−1φkφ

T
k P̂k−1 − α2

i,kPk−1φkφ
T
k Pk−1

)
O
(
1/k2

)
· E∥θ̃k∥ = o

(
1/k2

)
. (76)

Next, we will show Pk−1 − Pk = O
(

1
k2

)
. Noticing Pk = Pk−1 −

kβkPk−1φkφ
T
k Pk−1, where βk = β(φT

k θ ) is bounded and positive,
e have

Pk−1 − Pk∥ ≤ βkφ̄
2
∥Pk−1∥

2
= O

(
1/k2

)
. (77)

rom Theorem 4.1, substituting (73), (76) and (77) into (75) gives

θ̃kθ̃
T
k =Eθ̃k−1θ̃

T
k−1 − Eθ̃k−1θ̃

T
k−1akβkφkφ

T
k Pk−1

− EakPk−1βkφkφ
T
k θ̃k−1θ̃

T
k−1

+

m+1∑
i=1

h2
i,k

Hi,k
Pkφkφ

T
k Pk + o

(
1
k2

)

=PkP−1
k−1Eθ̃k−1θ̃

T
k−1P

−1
k−1Pk +

m+1∑
i=1

h2
i,k

Hi,k
Pkφkφ

T
k Pk + o

(
1
k2

)

=PkP−1
0 Eθ̃0θ̃

T
0 P

−1
0 Pk + o

(
k∑

l=1

PkP−1
l

1
l2
P−1
l Pk

)

+

k∑
l=1

m+1∑
i=1

h2
i,l

Hi,l
PkP−1

l Plφlφ
T
l PlP

−1
l Pk

=O
(

1
k2

)
+ Pk∆−1

k Pk + o

(
k∑

l=1

PkP−1
l

1
l2
P−1
l Pk

)
=o (1/k) + Pk∆−1

k Pk = ∆k + o (1/k) ,

hich implies the conclusion. □

. Numerical example

xample 1. Consider an in-orbit estimation problem of drag-free
satellite mass (Tan et al., 2021), in which the relation between the
residual acceleration ak, the thrust Pk and the unknown satellite
ass M is described as

ak =
Pk
M

−
CρS
2M

v2
k , (78)

here vk is the speed of the satellite along the tangent direction.
he unknown parameters C , ρ, S are the atmospheric drag coeffi-
ient, atmospheric density and windward area, respectively. The
easurement of the residual acceleration a can be modeled as a
k o

12
Fig. 1. Convergence of the IBID algorithm, the WQNP algorithm and the RP
algorithm.

quantized observation sk =
∑m

i=0 iI{Ci<ak+dk≤Ci+1}, where dk and Ci
are the measurement noise and the thresholds, respectively.

Set the unknown parameters M = 1 × 103 kg and CρS =

1 × 10−9 kg/m. The thrust Pk and the speed vk follow the
uniform distributions of the intervals [1 × 10−3, 2 × 10−3

] and
[1 × 103, 3 × 103

], respectively. The measurement noise follows
N(0, 22

× 10−12), and the thresholds are [C1, C2, C3] = [−3, 0, 3].
To avoid round-off error caused by the computer, we multiply
(78) by 106 and set

θ =

[
1
M × 103

−
CρS
2M × 1012

]
=

[
1

−0.5

]
, φk =

[
Pk × 103

v2
k × 10−6

]
.

And the prior information is θ ∈ Ω = [0, 2] × [−2, 0].
In this example, we compare the efficiency of the IBID algo-

rithm with other algorithms (including the WQNP algorithm with
[α1,k, α2,k, α3,k, α4,k, βk] = [−5, 0, 5, 10, 0.5] and the recursive
projection (RP) algorithm in Tan et al. (2021) with β1 = β2 =

β3 = 50). Here we repeat the simulation 500 times under the
same initial values θ̂0 = [2, 0]T and P̂0 = P0 = 3I2 to establish
the empirical variance of estimation errors representing the mean
square errors.

From Figs. 1–3, it can be seen that the IBID algorithm performs
better than the RP algorithm in Tan et al. (2021) and the WQNP
algorithm, even if the convergence rate of the other two algo-
rithms can also reach O

( 1
k

)
under the appropriate weight design.

oreover, the covariance of the IBID algorithm tends to the CR
ower bound, which shows its asymptotical efficiency.

. Concluding remarks

This paper focuses on how to design an optimal identifica-
ion algorithm under quantized observations. First, a weighted
uasi-Newton type projection algorithm is proposed to identify
ynamical systems with quantized observations under bounded
ersistent excitations. Then, based on the adaptive design on the
eight coefficients of the WQNP algorithm via the structure of
R lower bound, an IBID algorithm is constructed. And the mean
quare convergence rate of the algorithm can reach the recip-
ocal of the number of observations. Moreover, the asymptotic
fficiency of the IBID algorithm is established, which means its
ptimality.
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Z

Fig. 2. Convergence rate of the IBID algorithm, the WQNP algorithm and the RP
algorithm.

Fig. 3. Comparison between the empirical variance (kθ̃ T
k θ̃k) of the IBID algorithm,

the WQNP algorithm, the RP algorithm and the CR lower bound (k tr(∆k)).

These optimality results lay a foundation for designing appro-
priate communication protocol (threshold choice) and communi-
cation times to achieve the best identification performance under
same communication resources. Correspondingly, future work is
directed at studying sensor threshold selection to achieve opti-
mal utility of communication bandwidth resources in enhancing
identification accuracy.
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